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Carbon nanostructures are investigated using a multiscale approach based on density functional theory
�DFT� and Monte Carlo �MC� simulations. The structure of small fullerenes is calculated using DFT, and
simple models are employed to determine classical potential functions which are then used in MC simulations
to investigate larger structures. The structural parameters as obtained by DFT and by MC simulations are cross
validated for small fullerenes, allowing to understand the effect of the approximations made in MC simula-
tions. It is found that MC overestimates the numerical value of the excess surface energy of carbon nanostruc-
tures but the functional dependence, i.e., the decay exponent as a function of the fullerene size, is accurately
described. The MC results reveal that bond torsion is the dominant term of the total curvature energy. The
combination of DFT and MC allows to get reliable estimates for the excess surface energy of fullerenes as a
function of radius for a wide range of fullerene sizes, which may serve as an important input for large-scale
finite-element modeling of more complex systems.
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I. INTRODUCTION

Carbon nanostructures are a fascinating class of materials.
They include graphene,1,2 carbon nanotubes,3,4 and
fullerenes5 but also larger structures such as multiwall nano-
tubes, carbon onions,6 and more disordered systems such as
carbon fibers.7 Superior mechanical properties8,9 as well as
tunable electronic properties10 are only two examples which
already find or at least promise many technical applications
of such materials in different fields.

The ground state of an infinitely large array of sp2-bonded
carbon is the planar graphene configuration.1,2 For finite ar-
rays of carbon, the situation changes. The nonsaturated
bonds at the edges increase significantly the energy of the
system, and bending back and closure of the surface become
energetically favorable. The energy per area of such closed
surfaces as, e.g., fullerenes and carbon nanotubes is still
higher than the energy of �an infinite strip� of graphene.
Thus, these structures possess an intrinsic curvature-induced
excess surface energy �in the following denoted by surface
energy�, which is an essential input parameter for, e.g., large-
scale simulations of mechanical properties of extended car-
bon nanostructures such as multiwall nanotubes or carbon
onions. It is a well-established fact that surface energy and
surface stress �see, e.g., Ref. 11 for a distinction between
surface energy and surface stress� become increasingly im-
portant with decreasing size of objects, in particular, small
objects such as nanoparticles. From a continuum mechanical
point of view, the existence of a surface stress �which has the
same dimension as the surface energy� can be replaced by
the action of a normal pressure to the surface, being equiva-
lent to the product of the surface stress and the trace of the
curvature tensor �for details see Ref. 11�. According to this
substitutive normal pressure, an interesting scientific ques-

tion concerns the �mechanical� stability of carbon onions.6,12

Besides constitutive physical equations, continuum models
that may help to answer this question require quantitative
input parameters such as the beforehand mentioned surface
energy since curved structures are considered. The literature
on fullerenes and nanotubes is extensive; however, investi-
gations on the quantitative description of the surface energy
and its dependence on the curvature are scarce. One of the
few exceptions is the work of Terrones and Terrones,13 who
calculated the energy of curvature for a series of carbon
fullerenes employing a semiempirical Tersoff potential, with
the drawback of a wrong C-C bond length. Therefore, the
motivation for the investigations presented in this paper is to
reinvestigate this area and to provide a reliable estimation of
the surface energy as an first approximation to the surface
stress of fullerenes and nanotubes.

The method of choice to tackle such a problem is the
density functional theory �DFT�, which delivers ground-state
energies of structures at zero temperature. The smallest
fullerene �C60� consists of 60 carbon atoms, and is easily
accessible with standard DFT techniques. But fullerene
structures consisting of ten thousands of carbon atoms are
also possible, and the number of carbon atoms further in-
creases when one considers for instance carbon onions. Due
to computational limitations, a full quantum-mechanical de-
scription is not possible for such large structures and calls for
multiscale modeling approaches. For structures consisting of
several ten thousands of atoms Monte Carlo �MC� and mo-
lecular dynamics are the appropriate choices. These methods
rely on the use of classical potential functions and can be
used at any desired temperature.

In this paper, we use DFT calculations to construct clas-
sical potentials that are used as input in subsequent MC
simulations. The aim is twofold. First, the results of DFT and
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MC calculations shall be compared, if possible, to investi-
gate the validity of a classical approach and to understand its
possible shortcomings. Second, structures much larger than
those accessible with DFT are investigated using MC simu-
lations. Thus, we can extend the range of calculation from
C240 to C5120 and extract—among other interesting
information—surface energies for these structures.

The paper is structured as follows. First, we describe cal-
culations employing DFT to investigate the ground state of
carbon fullerenes up to C240 and also of some single-wall
carbon nanotubes �SWNTs�. Combining DFT and MC, it is
possible to calculate fullerenes up to C5120. In parallel, we
investigate also shell structures �see Sec. III B� as a model
for ideally spherical fullerenes. In Sec. IV, we first describe
how the potentials used in the MC simulations are con-
structed. Then we present the results on the topology and
energy of the fullerenes. The results are discussed with spe-
cial attention being paid to the comparison of the DFT- and
MC-based predictions.

II. METHODS

A. First-principles calculations

The Vienna ab initio simulation package �VASP� �Refs. 14
and 15� with the carbon projector augmented wave pseudo-
potentials based on the generalized gradient approximation
�GGA� employing the Perdew-Burke-Ernzerhof parametriza-
tion of the exchange-correlation functional �further referred
to as GGA� �Refs. 16 and 17� and ultrasoft local-density
approximation �LDA� �further referred to as LDA� pseudo-
potentials was employed. The k-point sampling of 1�1�1
for the fullerenes, 18�18�6 for the graphene two-atom
unit cell, and 1�1�9 for the nanotubes were used in order
to get the accuracy of around 1 meV/atom. The plane-wave
cutoff energy was 400 eV. Vacuum of 8 Å was found suffi-
cient to avoid unphysical interactions between neighboring
structures. The same parameters were used also for the ring-
shell structures. Since the GGA is known to underestimate
bonding while the LDA on the other hand overestimates
bonding, using them both will provide a measure for the
errors caused by these approximations.

B. Monte Carlo simulations

MC simulations were carried out in the �NVT� ensemble
�constant number of particles N, constant volume V, and con-
stant temperature T�. Following standard MC rules, a dis-
placement of an individual atom was performed with the
probability p=exp�−�E /kBT�,18,19 where �E denotes the dif-
ference in the total energy of the system before and after the
displacement and kB is the Boltzmann constant. The calcula-
tion of �E, which determines the transition probability p in
the system, is performed by introducing classical potential
functions describing the interactions in the system for any
given arrangement of atoms or molecules. The most common
approach to describe covalently bonded systems is to ap-
proximate the total energy as a sum of two-atom �bond-
stretching�, three-atom �bond-bending�, and four-atom
�bond-torsion� contributions. A widely used empirical param-

eter set employing this concept is realized by the Tersoff-
Brenner potential.20,21

The approach adopted in this paper is to construct classi-
cal potential functions from DFT data, instead of using em-
pirical parameter sets from literature. Thus, a consistent pa-
rameter set of classical potentials out of the quantum-
mechanical calculations is constructed. Following this
strategy, the MC results can be directly compared with the
DFT data allowing for a discussion of the quality of the
classical potentials and the approximations made during their
construction with respect to a full quantum-mechanical treat-
ment. In contrast, if an already existing parameter set was
used, it would not be possible to unambiguously attribute
differences in the DFT and MC results to the approximations
used. The DFT method and the empirical parameter set used
would not necessarily have to fit together. Following stan-
dard procedures, see, e.g., Refs. 22 and 23, bond-stretching,
bond-bending, and bond-torsion terms were included while
bond-coupling terms were neglected. Nonlocal �van der
Waals� interactions were neglected, too, since they were also
not included in the DFT calculations. The expression for the
total energy reads

E = �
n1

En1

S + �
n2

En2

B + �
n3

En3

T �1�

with En1

S , En2

B , and En3

T being the bond-stretching, bond-
bending, and bond-torsion contributions, respectively. The
number n1 spans all bonded pairs of atoms in the system, n2
and n3 run over all bond angles and torsion angles in the
system, respectively.

The functional form of the bond-stretching term between
two bonded atoms i and j is described with the Morse po-
tential,

ES�rij� = E0��1 − exp���rij − r0���2 − 1� , �2�

which is known to describe carbon-carbon bonds better than,
e.g., the Lennard-Jones potential. Here rij and r0 are the ac-
tual and the equilibrium bond lengths, respectively, E0 the
bond energy and �−1 the width of the potential.

The bond-bending term is described with a harmonic po-
tential,

EB��ijk� =
1

2
k��cos �ijk − cos �0�2 �3�

with �ijk being the angle between the i-j and j-k bonds, �0
the equilibrium bond angle, and k� the bending force con-
stant.

Finally, the torsion contribution is given by the first term
in a Fourier series expansion of the torsional potential,24

which favors a planar arrangement of bonds,

ET��ijkl� =
1

2
k��1 − cos 2�ijkl� . �4�

�ijkl is the torsion angle, i.e., the angle between the planes
containing atoms �i , j ,k� and �j ,k , l� where i-j, j-k, and k-l is
a series of successive bonds, k� is the torsion force constant.
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III. TOPOLOGY OF INVESTIGATED STRUCTURES

In order to provide a functional dependence of the total
energy on the fullerene size, we had to overcome the main
drawback of the DFT calculations, that is, the inability to
treat large systems with many atoms. Two approaches were
thus considered: �i� a full DFT calculation using approxima-
tive structures, which we call “ring shells” and �ii� Monte
Carlo simulations using interatomic potentials but treating
the complete fullerenes. The classical potentials needed for
the application of the MC simulation scheme were obtained
by DFT calculations of graphene and carbon SWNTs. All
investigated structures have in common that they consist
solely of threefold-coordinated �i.e., sp2-bonded� carbon at-
oms. In the following paragraphs, we shortly describe the
topology of the considered structures.

A. Fullerenes

Euler’s formula expresses the relationship between the
number of faces �F�, edges �E�, and corners �C� of closed
polyhedral surfaces,

2 = C − E + F . �5�

Thus, a �closed� three-coordinated structure consisting of
only hexagons and pentagons must contain exactly 12 pen-
tagons. An important subclass of these structures is
fullerenes with icosahedral symmetry, i.e., the 12 pentagons
are isolated from each other and are situated on the corners
of a regular icosahedron. These fullerenes can be classified
by the specification of two integer numbers, �m ,n�, describ-
ing the mutual position of two neighboring pentagons. The
number of corners is then C=20�m2+mn+n2�.25 In this pa-
per, we consider icosahedral fullerenes of type �0,n� with n
ranging up to 16 corresponding to a fullerene with 5120
carbon atoms. The only two exceptions are C60 ��1, 1� type�
and C240 ��2, 2� type�. The initial structures were built using
a layer-by-layer assembly of a planar graph,26,27 which was
subsequently projected on a perfect sphere. Using a DFT full
shape relaxation with the quasi-Newton residual minimiza-
tion method, direct inversion in the iterative subspace
algorithm28 or a MC equilibration procedure, these structures
were relaxed to their ground states and further investigated.

B. Ring shells

A severe limitation of DFT calculations is the rapidly in-
creasing computational time needed for large systems. A full
DFT treatment was therefore applied only for fullerenes up
to C240. To evaluate the influence of larger radii of curvature
on the surface energy, large fullerenes were approximated
with a spherical segment consisting of several hexagonal car-
bon rings. The broken C-C bonds were saturated with hydro-
gen atoms �see Fig. 1�. The energies calculated for these
structures were used to estimate the surface energy of large
fullerenes with radii corresponding to those of the shells. In
particular, we used a one-ring shell �12 atoms in total, six C
atoms in a hexagonal ring and six dangling bond saturated
with 6 H atoms�, a two-ring shell �in total 24 atoms, 12 C
atoms in two rings and 12 H atoms saturating the broken

bonds�, and a three-ring shell �36 atoms in total, 24 C atoms
and 12 H atoms�. This approximation relies on the following
assumptions: �i� a fullerene can be approximated with a
sphere, �ii� the surface of large fullerenes consists mainly of
hexagons �the number of 12 pentagons is fixed for all sizes�,
and �iii� the broken C-C bonds can be “saturated” with H
atoms �with a fixed C-H bond length� without disturbing the
characteristics of the carbon bonds. The C-C bond length
was kept at the value corresponding to the equilibrium
graphene value �bC-C

GGA=1.4263 Å, bC-C
LDA=1.4119 Å�. Subse-

quently, the C-H bond length was optimized in order to get
the best fit of energy per area to the ideal graphene. This
procedure yielded bC-H=1.09 Å for the one-ring shell, bC-H

=1.08 Å for the two-ring shell, and bC-H=1.09 Å for the
three-ring shell structure using the LDA. Using the GGA,
two optimum C-H bond lengths were obtained for the one-
and three-ring shells: bC-H=0.96 Å and bC-H=1.26 Å for the
one-ring shell, bC-H=1.08 Å for the two-ring shell, and
bC-H=0.97 Å and bC-H=1.25 Å for the three-ring shell
structure. The energies for the one- and three-ring shells are
almost independent which of the two optimum bond lengths
is used. The ring-shell structures with various radii were ob-
tained by projecting the planar ring patterns on spheres with
the corresponding radii while keeping all the bond lengths
constant.

C. Nanotubes

SWNTs were primarily used to determine the torsion part
of the potentials used for the MC simulations �see Sec. II B�
and the surface energy as a function of their radius was ob-
tained as a side product. SWNTs of armchair �n ,n� and zig-
zag �n ,0� type were investigated,29 as these two types corre-
spond to the two extreme cases of how a graphene sheet may
fold into a SWNT. In turn, we have obtained two different
estimates for the torsion constants �see Sec. IV A�.

IV. RESULTS

A. MC potentials from DFT calculations

DFT data were used to obtain the unknown force con-
stants in the above-described potential functions �Eqs.
�2�–�4��. Isotropic homogenous in-plane stretch deformation,
i.e., the same magnitude in all directions, was applied to a
graphene sheet, and the resulting energy vs bond-length data
points were fitted with Eq. �2� �see Fig. 2�. This procedure
yielded E0=6.1322 eV, �=1.8502 Å−1, and r0=1.4322 Å
using GGA while LDA gave E0=6.7104 eV, �

FIG. 1. �Color online� The shell models: �a� one-ring, �b� two-
ring, and �c� three-ring shells. Small balls represent hydrogen atoms
passivating the broken C-C bonds �see text for explanation�.
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=1.8504 Å−1, and r0=1.4169 Å. The Morse potential fits
the data remarkably well whereas the Lennard-Jones poten-
tial is not able to reproduce the functional dependence ad-
equately.

Two different deformation modes were used to obtain the
force constants for bending: �i� uniaxial stretching and �ii�
shear deformation �Figs. 3�a� and 3�b��, respectively. The

right side of Fig. 3 shows the deformations applied for the
uniaxial and shear deformation, respectively. In the uniaxial
stretching mode, the graphene sheet was stretched only in the
y direction. As a consequence, only the bond angles �and not
the bond lengths� change. There are two different angles in
the deformed unit cell: � and �180°−� /2�. Symmetry dic-
tates the equilibrium angle to be �0=120°. The GGA calcu-
lated data points yield k�

�1�=9.08 eV �and k�
�1�=8.7 eV for

the corresponding LDA calculations�. In contrast to the
uniaxial stretching mode, both the angles and the bond
lengths change in the shear deformation mode �see Fig.
3�b��. Assuming that the total energy of the system is a
simple sum of the different energy terms, the bond-stretching
contribution �now known� can be subtracted and once again
we should obtain the energy purely due to bond bending.
Doing so, one finds for the GGA data points k�

�2�

=10.84 eV �the corresponding LDA value is k�
�2�

=11.46 eV�. The fact that k�
�1��k�

�2� is a first indication that
splitting the total energy into a sum of different contributions
is not exactly valid but it is only an approximation.

Carbon nanotubes of different diameters and geometries
were used to obtain the torsion constant. Figure 4 shows the
torsion energy together with the fitted linear dependence for
an extraction of the torsion constant. Using k�= �k�

�1�

+k�
�2�� /2�10 eV for the bending force constant, a torsion

constant k�=0.346 eV �k�=0.397 eV for the LDA calcula-
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tions� was obtained almost independent on the different ge-
ometries �armchair and zigzag SWNTs�. Although the data
points could be perfectly fitted with the assumed functional
form of the torsion potential, the fact that the torsion energy
shows a significant negative offset �instead of passing
through the origin� as well as that the energy curves show a
horizontal shift for the two different geometries points once
again toward the approximative form of the interatomic po-
tentials being used.

Table I summarizes the obtained force constants used fur-
ther on for the MC simulations of the fullerenes.

B. Geometry of fullerenes

Basic characteristics of the optimized fullerenes as ob-
tained from the DFT and the MC simulations are summa-
rized in Table II. The apparent radii r of the fullerenes were
calculated according to the following definition,

r = 	
ri − R
� , �6�

where ri is the position vector of the ith atom, R is the
position vector of the center of mass of the fullerene, and
angular brackets denote averaging over all atoms. Only four
fullerenes, C60, C70, C180, and C240, were calculated using
DFT; results for larger structures up to C5120 come solely

from MC simulations. While the DFT calculations were car-
ried out at zero temperature, the temperature in the MC
simulations was set according to kBT=25 �eV, i.e., 0.1% of
the energy corresponding to room temperature. The finite
temperature was chosen to avoid computational problems
such as trapping in local minima. A temperature of 25 �eV
is large enough to avoid these problems but also small
enough that the system is found essentially in its global en-
ergy minimum without any additional entropy effect �note
that in a MC simulation it is the free energy that is mini-
mized not the internal energy�. Figure 5 shows snapshots of
four representative structures optimized with the MC
method. The overall shape of the fullerenes from DFT and
MC methods is the same and agrees well with previous stud-
ies in the literature.30,31 The C60 atoms lie on a sphere. With
increasing number of carbon atoms, the regions with only
hexagons become flatter while pronounced vertices are
formed near the pentagons. This flattening is clearly shown
by both the DFT and MC calculations. Since graphene has a
lower energy per bond than any curved fullerene, the ten-
dency for faceting may be seen as an effort to minimize the
total energy by becoming more similar to graphene in the
hexagon regions on the expense of forming vertices around
the pentagons.

Figure 6 presents the bond lengths histograms for C60,
C240, C320, and C2000. A comparison of DFT and MC results
reveals an interesting behavior. For the smallest fullerene,
C60, the bond lengths histograms obtained with the two
methods match perfectly. The distribution shows a single
peak centered at the equilibrium bond length. The only dif-
ference is the height �and the width� of the distribution,
which is smaller �larger� in the case of the MC simulations.
This stems from the fact that in contrast to the DFT calcula-
tions the MC simulations were not performed at exactly zero
temperature, which leads to the broadening of the infinitely
sharp distribution at zero temperature �the small broadening
of the DFT simulation results from a numerical noise, i.e.,
the accuracy used�. The single peak splits into four distinct
peaks for the C240 fullerene, which is reflected by both the
DFT as well as the MC simulations. In this case, the posi-
tions of the four peaks are different for the two calculations:
the DFT results are shifted to slightly lower bond lengths; the
larger the fullerenes the larger the width of the peaks, see, for
example, C320 and C2000 in Fig. 6. The C2000 exhibits only
one large �flat facets� and only some smaller side peaks �ver-
tices around pentagons�.

C. Excess surface energy

An important outcome of this work with respect to large-
scale continuum modeling is the surface energy as a function
of the fullerene radius �i.e., its size�. We define the �excess�
surface energy of a fullerene as the increase in its total en-
ergy with respect to �planar� graphene. Consequently, the
presented surface energy is a quantity averaged over the
whole surface of a fullerene. It is beyond the scope of this
paper to give a position-dependent surface energy reflecting
the local curvature. Unless stated otherwise, the surface en-
ergy is expressed per bond.
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FIG. 4. The torsion contribution to the total energy as obtained
from the armchair and zigzag SWNTs GGA data sets.

TABLE I. Parameters of the constructed classical potentials for
the MC calculations. E0, �, and r0 are related to the bond-stretching
term, k� and �0 describe the bond-bending contribution, and k� is
the torsion force constant. The two data sets �GGA and LDA� cor-
respond to the two different DFT pseudopotentials considered.

Quantity GGA LDA

E0 6.1322 eV 6.7104 eV

� 1.8502 Å−1 1.8054 Å−1

r0 1.4322 Å 1.4169 Å

k� 10 eV 10 eV

�0 120° 120°

k� 0.346 eV 0.397 eV
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Figure 7 shows the surface energy as calculated with the
three different approaches described in this paper: DFT full
structures �circles� and MC full structures �squares� in Fig.
7�b�, and the ring shells in Fig. 7�c�. Using DFT for the full
fullerene structures it was possible to calculate the energy
only up to C240, i.e., a radius of �7 Å. The MC approach
was applied to fullerenes up to C5120 corresponding to a ra-

dius of more than 30 Å. The ring-shell approximation can,
in principle, access any radius �calculated up to 500 Å�. All
three data sets could be reasonably well fitted with a power
law of the form

E � r� �7�

with �=−1.43 for the DFT full structures �correlation coef-
ficient R2=0.9996� and �=−1.40 for the MC simulations
�R2=0.9985�, respectively �in all three cases, the � expo-
nents were obtained by fitting the LDA and GGA data sets
together�. Different values are obtained for the ring-shell
models fitted to the entire data range: �=−2.30 for one-ring
shells, �=−2.64 for the two-ring shell model �R2=0.9997�,
and �=−4.05 for the three-ring shells. It is interesting to note
that even though C70 does not have the icosahedral symme-
try, its surface energy falls nicely onto the trend of the icosa-
hedral fullerenes �see Fig. 7�b��.

The approximations made during constructing the MC po-
tentials lead to an overestimation of the absolute values of
the surface energy by a factor of �1.57. However, the expo-
nent � differs by only �2% with respect to the one coming
from the DFT fullerene calculations. On the other hand, the
ring-shell models strongly overestimate the exponent which
is most likely caused by an inappropriate representation of
the fullerene geometry. In particular, �i� the large fullerenes
approximated as ring shells do not show the correct bond
lengths and shape �spherical vs faceted� and �ii� the ring
shells, in fact, approximate structures consisting only of

TABLE II. Radii and curvature energies for the fullerenes considered in this study calculated using the
DFT and MC methods. The surface energy is the difference between the energy per bond of the structurally
optimized fullerene and graphene �i.e., the parameter E0 of the bond-stretching potential�. The radius was
calculated as the mean distance between the center of mass and all atoms forming a fullerene. Literature data
�Ref. 30� for radii from a GGA-based study are labeled with a star � ��.

DFT MC

GGA LDA GGA LDA

r
�Å�

�E
�eV/bond�

r
�Å�

�E
�eV/bond�

r
�Å�

�E
�eV/bond�

r
�Å�

�E
�eV/bond�

C60 3.55 0.253 3.52 0.259 3.55 0.397 3.51 0.434

3.55�

C70 3.84 0.225 3.80 0.231

C180 6.16 0.117 6.08 0.119 6.16 0.184 6.10 0.201

6.13�

C240 7.08 0.091 7.11 0.150 7.04 0.164

7.07�

C320 8.20 0.125 8.12 0.137

C500 10.23 0.092 10.13 0.101

C720 12.26 0.071 12.13 0.078

C980 14.28 0.056 14.14 0.062

C1280 16.31 0.046 16.14 0.051

C1620 18.34 0.038 18.15 0.042

C2000 20.37 0.032 20.15 0.036

C2880 24.42 0.024 24.17 0.027

C5120 32.54 0.015 32.20 0.017

C60 C240
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FIG. 5. Snapshots of four fullerenes as optimized using MC.
The large area flat facets are being formed already for the C980.
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hexagons and no pentagons. This fact is clearly demonstrated
in Figs. 7�b� and 7�c� for small radii where the discrepancy
between the ring-shell and the DFT full structure data points
is significant �e.g., for r=3 Å, the two-ring shell having no
pentagon is projected on almost a half of the corresponding
sphere while half of the C60 with r�3.5 Å contains six
pentagons�.

While DFT gives only the total energy, in MC simulations
various contributions to the total energy are explicitly calcu-
lated. Figure 8 shows the contributions from stretching,
bending, and torsion deformations. Each of them individu-
ally follows a power-law dependence on the radius but with
different exponents: �=−2.18 for stretching, �=−1.80 for
bending, and �=−1.33 for torsion, respectively. The stretch-
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FIG. 7. �Color online� Double logarithmic plot of surface energy vs radius: �a� the zigzag �down triangle� and armchair �up triangle�
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literature in �b� are included for comparison �Ref. 13�.
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ing contribution is the only to show nonmonotonic behavior.
For C60, the stretching part is almost zero, as is expected,
since all the bond lengths are centered at the equilibrium
bond length �see Fig. 6�. The splitting of the peak of bond
lengths leads to an increased energy that reaches a maximum
for C240. The given exponent describes the decay after the
maximum. An interesting observation is that torsion gives
the largest contribution �with the slowest decay� to the total
energy, although the torsion force constant is by far the
smallest.

As mentioned in Sec. I, the motivation for this study was
to estimate the surface energy of carbon fullerenes, i.e., the
energy per unit area. However, isolated fullerenes are actu-
ally not spheres, in contrast to what seems so be the case for
multilayered “onion” structures.6,12,13 Therefore, it is quite
difficult to extract the surface energy as a function of the
radius. For spherical layers of carbon onions, the ring-shell
models become more appropriate due to the correct geom-
etry. Focusing only on structures with r�10 Å, where large
areas consisting only of hexagons are present, following de-
cay parameters �identical for both, energy per bond and en-
ergy per area dependencies� are obtained: �=−2.08 for one-,
�=−2.12 for two-, and �=−2.51 for three-ring shells �see
Fig. 7�c��. Since a larger shell model �i.e., modeling a larger
portion of the spherical surface� is likely to be less influ-
enced by inaccuracies caused by the dangling bonds, ��
−2.5 is the best estimate for the decay parameter of spherical
fullerenes based on the present calculations.

Having calculated the DFT energies of SWNTs for the
estimation of the torsion force constant, we can estimate the
� exponent also for these objects. SWNTs have two different
curvatures in the two perpendicular directions �zero curva-
ture along the SWNTs’ axis� which distinguish them from
spherical fullerenes having a �more or less� uniform curva-
ture. The results plotted in Fig. 7 clearly show that the
data points from both extreme SWNTs types, the zigzag and

armchair types, follow the same power law with �=−2.07
�energy per bond dependence�. The calculated SWNTs radii
are in excellent agreement with the values from the
literature.29,32 In this case, the actual surface can be approxi-
mated with much higher reliability than for the fullerenes
yielding �=−2.04 for the energy per area dependence.

V. DISCUSSION

In this paper, fullerenes up to C240 were studied using
DFT methods while different approximations were applied to
investigate larger structures. As long as isolated fullerenes
were considered, an attempt to approximate large fullerenes
with parts of spherical surfaces �ring shells� yielded unsatis-
factory results. However, it should be mentioned that the
results obtained from the ring-shell model might be of some
value for estimating the surface energy of the individual lay-
ers of carbon onions, which form rather perfect spheres even
for a very large number of atoms. In particular, for larger
spherical layers of carbon onions, the influence of the 12
pentagons diminishes and so does the error caused by ne-
glecting them in the model.

A different approximation is achieved by switching from
a full quantum-mechanical description to MC simulations
that still keep the discrete nature of matter but describe the
interactions between atoms with classical potentials. This in-
termediate step is needed to calculate relevant physical pa-
rameters which can subsequently be used as input parameters
for continuum models, e.g., finite-element calculations. In
this paper, we have made the first step: DFT calculations
were used to construct interatomic potentials between carbon
atoms. These potentials were used in MC simulations of
fullerene structures with increasing size. The two methods
were cross validated where possible.

Energy contributions from two- �stretching�, three- �bend-
ing�, and four-body �torsion� interactions were included. Two
different deformation modes were used for estimation of the
bond-bending potential. In an ideal case, both should lead to
the same results. Since this was not the case, obviously split-
ting of total energy into a simple sum of individual contribu-
tions is not exact. In other words, the energy contributions
due to stretching, bending, and torsion are not completely
independent. It is argued in literature that also the coupling
terms, e.g., bond stretching-bending or stretching-torsion, as
well as nonbonded terms �van der Waals interactions� have to
be included.33 Although these terms were neglected in the
present work, the results obtained give a reliable estimate for
the purposes of subsequent macroscopic simulations while
keeping the extremely simple form of the potentials �and
thus the MC calculations are highly affordable�.

A comparison of DFT and MC results reveals that MC
predicts higher excess curvature energies. Using the fitted
power laws, we find that the MC simulations overestimate
the energy by a factor of �1.57. A similar result is obtained
also from a comparison with the work of Ref. 13, where the
Tersoff potential34,35 was used �see Fig. 7�. This overestima-
tion stems from the fact that the potentials for stretching as
well as for bending were calculated for graphene, which is a
planar configuration, and then used for the curved configu-
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ration of fullerenes. If, for example, we take the C60
fullerene, keep all the atoms fixed and only change the bond
length �i.e., alter the stretching part while keeping bending
and torsion contributions constant�, we obtain slightly differ-
ent parameters for the stretching potential. Additionally, the
energy values obtained for the planar configuration are
higher than for the curved fullerenes �cf. Fig. 4�, which is
demonstrated by the strong negative offset. These effects can
probably be compensated by considering bond coupling
terms as suggested in Ref. 33, where negative values for the
stretching-torsion coupling constant are found, which would
lower the total energy of our systems. The quantum-
mechanical origins of these difficulties lie in the complexity
of the electronic cloud around the nuclei. While the charge
distribution above and below the graphene plane is symmet-
ric, there is about 20% less charge accumulated inside than
outside the C60 sphere. Consequently, the interatomic inter-
actions within the curved surfaces are inherently more com-
plex than in the planar structures implying that even the
stretching potential should not be expected to be transferable
from the planar to the curved surface. Nevertheless, although
the absolute values of the energy are overestimated by the
MC method, both methods yield almost the same exponent �
for the size dependence of the surface energy, which demon-
strates that the functional dependence of the energy on the
radius is the same.

The DFT and MC simulations have resulted in the same
relaxed structures. While the distribution of bond lengths has
a single peak for C60, it splits into several peaks for larger
fullerenes. The splitting is correctly reproduced by the MC
method �e.g., four peaks with similar spacing are obtained
for both, MC and DFT, calculations� whereas the positions of
the single peaks from the MC calculations are slightly shifted
with respect to the DFT results. Similar bond-length distri-
butions were reported earlier by other groups,31 although
their histograms seem to be sharper �C320 being the excep-
tion�. We ascribe this discrepancy to different tools used for
the structure optimizations. It is worth pointing out that in
the MC simulations the splitting is observed only when the
torsion contributions, i.e., four-particle interactions, are taken
into account. If only stretching and bending terms are con-
sidered, no splitting occurs, suggesting that the four-particle
interactions are essential for the correct description of
fullerenes. Furthermore, torsion yields by far the highest
contribution to the surface energy albeit the small force con-
stant. We attribute this to the fact that, in contrast to the bond
length and angle, the torsion angle cannot be kept close to its
equilibrium value in a curved geometry �geometric frustra-
tion�. The stretching contribution can be kept small by en-
suring the bond lengths being close to their equilibrium val-
ues, and also the bending part can be reasonably minimized

�only the 12 pentagons show bending angles of �108°�. In
contrast, the torsion contribution that favors a planar con-
figuration cannot be eliminated. In fact, one may be tempted
to assume that the torsion contribution can be minimized by
maximizing the radius of the fullerene since a large radius
approximates the planar graphene layer best. This reasoning
is, however, not correct. A simple rescaling of the coordi-
nates of all the atoms present in the structure leaves the
torsion contribution unaltered, as one can easily see in the
definition of the torsional angles. The planar state is approxi-
mated only, if the radius as well as the number of atoms in
the structure increase. Nevertheless, considering the almost
parallel slope of MC and DFT data in Fig. 7, it seems un-
likely that higher-order contributions �five particle and more�
to the potential energy play a significant role, although they
might change the absolute values of the energy.

VI. CONCLUSIONS

Geometry and energy of carbon fullerenes were studied
by a combination of density functional theory and Monte
Carlo methods. DFT was used to construct compatible MC
potentials which were subsequently used for studies of large
fullerenes that cannot be easily handled by the standard DFT
tools. The �curvature induced excess� surface energy follows
a power law as a function of the structure mean radius. Both
methods used yielded practically the same power-law expo-
nent for the surface energy per bond: �DFT=−1.43 and �MC

=−1.40. When the surface energy is expressed per area, the
exponents change to �DFT=−1.67 and �MC=−1.40. The
fullerenes do not have spherical shape which is in contradic-
tion with experimental observations in onion structures. We
therefore modeled perfect spherical structures using approxi-
mative shell models which yielded ��−2.5 for the energy
per area function.

Classical MC potentials for the sp2-bonded carbon were
constructed based on the DFT data in order to obtain com-
patible data sets. A detailed discussion on their performance
with respect to the full quantum-mechanical description was
given. It has turned out that only stretching �two-particle�
and bending �three-particle� interactions are not able to re-
produce the correct fullerene geometries �i.e., bond-length
and angle distributions leading to extended flattened areas�,
for which at least the four-particle interaction �i.e., torsion�
has to be included.
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